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Abstract. Full one-loop electroweak corrections to the on-shell decay H+ → W+A0 are computed in the
framework of models with two Higgs doublets (THDM). Such a decay may be dominant for H± over a
wide range of parameter space relevant at present and future colliders. We show that the corrections may
approach 40% and in particular are sensitive to λ5, which parameterizes the discrete symmetry breaking
term. We suggest that a measurement of the branching ratio of H+ → W+A0 may offer a possibility of
measuring the magnitude of λ5.

1. Introduction

The phenomenology of charged Higgs bosons (H±) has
received much attention in recent years [1] since their dis-
covery would provide conclusive evidence of physics be-
yond the standard model (SM) [2]. Charged Higgs bosons
are predicted in many theoretically well-motivated exten-
sions of the SM. The simplest model which contains a H±
is the two Higgs doublet model (THDM), which is formed
by adding an extra complex SU(2)L ⊗ U(1)Y scalar dou-
blet to the SM lagrangian. Motivations for such a struc-
ture include CP -violation in the Higgs sector and a possi-
ble solution to the cosmological domain wall problem [3].
In particular, the Higgs sector of the minimal supersym-
metric standard model (MSSM) [1] takes the form of a
constrained THDM.

The phenomenology of H± has received substantial
attention at e+e− colliders [4,5], hadron colliders [6–8],
µ+µ− colliders [9] and γγ colliders [10]. Most phenomeno-
logical studies have been carried out in the context of the
MSSM. The combined null-searches from all four CERN
LEP collaborations derive the lower limit mH± ≥ 77.4
GeV (95% c.l.) [11], a limit which applies to all models
in which BR(H± → τντ )+ BR(H± → cs) = 1, where
BR signifies the branching ratio. Current mass bounds
from LEP-II for the neutral pseudoscalar A0 of the MSSM
(mA ≥ 90.5 GeV) force mH± ≥ 120 GeV in this model
[12], which is stronger than the direct search limit above.
Limits on mH± from the Fermilab Tevatron searches [13]
are tanβ dependent since a significant BR(t → H+b) is
required in order to obtain a visible signal. The limits
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are competitive with those from LEP-II for the regions
tanβ ≤ 1 or ≥ 40.

In the MSSM, mH± and the mass of the pseudoscalar
mA are approximately degenerate for values greater than
200 GeV, and so the two-body decay H± → A0W is never
allowed for masses of interest at the CERN Large Hadron
Collider (LHC). The three-body decay H± → A0W ∗ →
A0ff is open for smaller mH± although it possesses a
small branching ratio (BR ≤ 5% for mH± ≥ 110 GeV)
[14]. Therefore, for masses of interest at the LHC the prin-
cipal decay channel is H± → tb, with decays to SUSY
particles possibly open as mH± increases [15]. Recently
there has been a surge of interest in studies of the MSSM
with unconstrained CP -violating phases. In such scenarios
H0–A0 mixing may be induced radiatively [16] although
this only leads to maximum mass splittings of the order
20 GeV for small values of tanβ; thus the two-body decay
would not be open even in this case.

Non-supersymmetric THDMs (hereafter to be called
simply “THDM”) have also received considerable atten-
tion in the literature. In such models all the Higgs masses
may be taken as free parameters (in contrast to the
MSSM), thus allowing the possibility of the two-body de-
cay H± → A0W for certain choices of mA and mH± . This
decay mode possesses no mixing angle suppression, in con-
trast to H± → h0W , and may compete with conventional
decays [17,18]. In fact, in a sizeable region of parameter
space we show that it may be the dominant channel. Mo-
tivated by the results in [17] the authors calculated in [19]
the Yukawa corrections to the decay H± → A0W (∗) and
found that in the on-shell case the corrections may ap-
proach 50% for small values of tanβ. In this paper we
complete that analysis and include the full bosonic cor-
rections for the case of the W being on-shell.
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Conventional Higgs searches at LEP-II assume the de-
cays H± → τντ and cs [11], although the OPAL col-
laboration has recently carried out the first search for
H± → A0W ∗ topologies [20] in the context of the THDM
(Model I). A recent study [21] showed that the decay
H± → A0W offers good chances of detection for H± at
the LHC, where an analysis in the context of the MSSM
with an extra singlet superfield was carried out (NMSSM).
Much of this work would be relevant for the THDM that
we consider, although our bosonic corrections would not
be directly applicable to the NMSSM, since the latter pos-
sesses two more neutral Higgs bosons in addition to dif-
ferent Higgs self-couplings.

This paper is organized as follows. In Sect. 2 we in-
troduce our notation and outline the form of the one-
loop corrections. In Sect. 3 we explain the importance of
including diagrams with the emission of a soft photon,
H+ → W+A0γ, in order to keep the radiative correc-
tions infra-red finite. Section 4 covers the various exper-
imental and theoretical constraints that we impose. Sec-
tion 5 presents our numerical results for the full corrections
(bosonic and Yukawa), while Sect. 6 contains our conclu-
sions. The explicit form of the corrections is contained in
the appendix.

2. Lowest order result and structure
of one-loop radiative corrections

2.1. Lowest order result

We will be using the notation and conventions of our pre-
vious work [19], which we briefly review here. The mo-
mentum of the charged Higgs boson H+ is denoted by pH
(pH is incoming), pW is the momentum of the W+ gauge
boson and pA the momentum of the CP -odd A0 (pW and
pA are outgoing).

The relevant part of the lagrangian describing the in-
teraction of the W± with H± and A0 comes from the
covariant derivative which is given by

L =
e

2sW
W+
µ (H− ↔

∂
µ

A0) + h.c. (2.1)

This interaction is model independent (SUSY or non-
SUSY) and depends only on standard parameters: the
electric charge (e) and the Weinberg angle (sW = sin θW).

The lowest-order Feynman diagram for the two-body
decay H+ → A0W+ is depicted in Fig. 1.

In the Born approximation, the decay amplitude of
the charged Higgs into an on-shell CP -odd Higgs boson
A0 and the gauge boson W+ (Fig. 1) can be written as

M0(H+ →W+A0) = ε∗µΓ
µ
0 , (2.2)

where

Γµ
0 = i

e

2sW
(pH + pA)µ.

Here εµ is the W± polarization vector. We then have the
following decay width:

Γ 0
on =

α

16s2
Wm2

Wm3
H±

λ
3
2 (m2

H± ,m2
A,m

2
W ), (2.3)
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Fig. 1. Lowest-order Feynman diagram for the decay H+ →
A0W+

where λ = λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) is
the familiar two-body phase space function. Note that in
the MSSM the two-body decay of the charged Higgs boson
into W+A0 is kinematically not allowed. In this paper we
will not present results for the case of W± being off-shell.
The authors of [19] evaluated the Yukawa corrections in
the off-shell case for mH± in the range of LEP-II, finding
maximum values of a few percent.

2.2. One-loop radiative corrections

We shall evaluate the bosonic one-loop radiative correc-
tions to the decay H+ → W+A0, and add them to the
Yukawa corrections previously evaluated in [19]. This set
of corrections is ultra-violet (UV) and infra-red (IR) di-
vergent. The UV singularities are treated by dimensional
regularization [22] in the on-mass-shell renormalization
scheme. The IR divergences are treated by the introduc-
tion of a small fictitious mass δ for the photon, which we
shall explain in the next section.

The typical Feynman diagrams for the virtual correc-
tions of order α are listed in Figs. 2.1–2.16. These con-
tributions have to be supplemented by the counterterm
renormalizing the vertex H+A0W− (2.4). Note that in the
THDM, the vertices W+A0G−, W+G0H−, W+W−A0

and A0H+H− are not present, and so the mixing G+–
H+, G0–A0 and W+–H+ does not give any contribution
to our process. In our case, the gauge boson W is on-
shell and so the mixing W±–G∓ is absent. The full set
of Feynman diagrams are generated and computed using
the FeynArts and FeynCalc [23,24] packages. The ampli-
tudes of the typical vertices are given in terms of the one-
loop scalar functions [25] and are written explicitly in Ap-
pendix B. We also use the fortran FF-package [26] in the
numerical analysis.

In what follows we will use the on-shell renormaliza-
tion scheme developed in [19] (and references therein). The
vertex counterterm is given by

δL =
e

2sW
W+
µ (H− ↔

∂
µ

A0) (2.4)

×
(

1
2
δZWW +

1
2
δZA0A0 +

1
2
δZH±H± + δZe − δsW

sW

)
,

where δZWW , δZA0A0 and δZH±H± are the wave function
renormalization constants for the W± gauge boson, A0
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Fig. 2. Feynman diagrams for the one-loop corrections to the
decay H+ → A0W+: (i) vertex (2.1–2.16), (ii) bremsstrahlung
diagrams for H+ → A0W+γ (2.17–2.19) (iii) CP -odd Higgs
boson self-energy (2.20–2.28) and charged Higgs boson self-
energy (2.29–2.36)

and H± Higgs boson, defined as follows:

δZii = −∂Σii(k2)
∂k2

∣∣∣∣
k2=m2

i

, i = W,A0, H±, (2.5)

δm2
i = ReΣii(m2

i ), i = W,Z. (2.6)

where Σii(k2) is the bare self-energy of the H±, A0 or W .
The electric charge counterterm and δsW/sW are defined
by

δsW

sW
= −1

2
c2W
s2
W

(
δm2

W

m2
W

− δm2
Z

m2
Z

)
, (2.7)

δZe = −1
2
δZγγ +

1
2
sW

cW
δZZγ

=
1
2
∂Σγγ

T (k2)
∂k2

∣∣∣∣
k2=0

+
sW

cW

ΣγZ
T (0)
m2
Z

. (2.8)

The index T in Σγγ
T and ΣγZ

T denotes that we take the
transverse part. The scalar one-loop self-energies enter-
ing in the above equations (2.5)–(2.8) are given in Ap-
pendix C.1 and C.2, while the gauge boson self-energies
can be found in [27].

The one-loop amplitude M1 (vertex plus countert-
erms) can be written

M1(H+ →W+A0) =
e

2sW
(ΓHpµH + ΓW pµW )ε∗µ, (2.9)

where ΓH and ΓW can be cast as follows:

ΓW = Γ vertex
W + δΓ vertex

W , (2.10)
ΓH = Γ vertex

H + δΓ vertex
H . (2.11)

Here Γ vertex
W,H represents the vertex corrections and δΓ vertex

W,H
is the counterterm contribution needed to remove the UV
divergences contained in Γ vertex

W,H .
The expressions of the counterterms are

δΓ vertex
W = −

(
δZe − δsW

sW

+
1
2

(δZH+H+ + δZA0 + δZW )
)
,

δΓ vertex
H = −2δΓ vertex

W . (2.12)

In the on-shell case the interference term 2ReM0∗M1,
found from squaring the one-loop corrected amplitude
|M0 +M1|2, is equal to ΓH |M0|2 [19]. Hence the one-
loop corrected width Γ 1

on can be written as

Γ 1
on = (1 + ΓH)Γ 0

on, (2.13)

with ΓH defined by (2.11) interpreted as the fractional
contribution to the tree-level width, Γ 0

on. Note that ΓW
(2.10) does not contribute to Γ 1

on.

3. Real photon emission: H+ → W +A0γ

The vertex correction supplemented by the counterterms
is UV finite but there still remains infra-red divergences.
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These arise from the Diagrams 2.10 and 2.11 with V = γ
and also from the wave function renormalization constant
δZH±H± (Diagram 2.33) and δZWW . In order to obtain
a finite result, one has to add the correction from the
emission of a real photon in the final state as drawn in
Figs. 2.17–2.19.

In terms of the momenta of the particles in the final
state, the square amplitude of the process H+ → A0W+γ
is given by

|M(H+ → A0W+γ)|2 = − e4

s2
W

λ(m2
H±,m2

A,m
2
W )

×
[
m2
H±

m2
W

1
(2pHkγ)2

+
1

(2pW kγ)2

+
(
m2
A −m2

H±

m2
W

− 1
)

1
(2pW kγ)(2pHkγ)

]
, (3.1)

where kγ denotes the momentum of the photon. Note that
as a consequence of gauge invariance, the amplitude of the
sum of the three diagrams (Figs. 2.17–2.19), should van-
ish when multiplied by the four-momentum of the photon,
which provides a good check of the calculation. The inte-
grals over three-body phase space can be found in [28],
and one obtains the following expression for the width:

ΓBr = −Γ 0
on

e2M2
H±

π2λ1/2 (3.2)

×
[
m2
H±

m2
W

IHH + IWW +
(

1 +
m2
H± −m2

A

m2
W

)
IHW

]
,

where IHH , IWW and IHW are given by

IHH =
1

4m4
H±

{
λ1/2log

(
λ

δmH±mAmW

)

− λ1/2 − (m2
W −m2

A)log
(
β1

β2

)
−m2

H± log(β0)
}
,

IWW =
1

4m2
H±m2

W

{
λ1/2log

(
λ

δmH±mAmW

)

− λ1/2 − (m2
H± −m2

A)log
(
β0

β2

)
−m2

W log(β1)
}
,

IHW =
1

4m4
H±

{
2log

(
λ

δmH±mAmW

)
log(β2)

+ 2log2(β2)− log2(β0)− log2(β1)

+ 2Sp(1− β2
2)− Sp(1− β2

0)− Sp(1− β2
1)

}
, (3.3)

where λ = λ(m2
H± ,m2

A,m
2
W ) is the two-body phase space,

δ is a small fictitious photon mass, Sp is the dilogarithm
function and the βi are defined by

β0 =
m2
H± −m2

W −m2
A + λ1/2

2mWmA
,

β1 =
m2
H± −m2

W + m2
A − λ1/2

2mH±mA
,

β2 =
m2
H± + m2

W −m2
A − λ1/2

2mH±mW
. (3.4)

We stress here that the IR divergence contained in IHH
(IWW ) is canceled by the wave function renormalization
constant of the charged Higgs H± (W±), while the IR
divergence contained in IHW is cancelled by the vertex
Diagrams 2.10 and 2.11 (with V = γ). One can eas-
ily confirm that adding the virtual corrections with the
bremsstrahlung diagrams yields an IR finite result. This
feature has been checked both algebraically and numeri-
cally.

4. THDM scalar potential:
theoretical and experimental constraints

In this section we define the THDM scalar potential that
we will be using. In Appendix A we list the trilinear and
quartic scalar self-couplings which are relevant to our
study. Other relevant couplings involving Higgs boson in-
teractions with gauge bosons and fermions can be found
in [1]. For a full list of scalar trilinear and quartic cou-
plings, see [29]. It has been shown [1] that the most gen-
eral THDM scalar potential which is both SU(2)L⊗U(1)Y
and CP -invariant is given by

V (Φ1, Φ2) = λ1(|Φ1|2 − v2
1)2 + λ2(|Φ2|2 − v2

2)2

+λ3((|Φ1|2 − v2
1) + (|Φ2|2 − v2

2))2

+λ4(|Φ1|2|Φ2|2 − |Φ+
1 Φ2|2)

+λ5(Re(Φ+
1 Φ2)− v1v2)2

+λ6[Im(Φ+
1 Φ2)]2, (4.1)

where Φ1 and Φ2 have weak hypercharge Y = 1, v1 and
v2 are respectively the vacuum expectation values of Φ1
and Φ2 and the λi are real-valued parameters. Note that
this potential violates the discrete symmetry Φi → −Φi
softly by the dimension-two term λ5Re(Φ+

1 Φ2) and has
the same general structure as the scalar potential of the
MSSM. One can easily prove that for λ5 = 0 the exact
symmetry Φi → −Φi is recovered. We note that [30] lists
the complete Higgs trilinear and quartic interactions for
two 6 parameter potentials, referred to as “Potential A”
and “Potential B”. Potential A is equivalent to our po-
tential if λ5 → 0, and in this limit the Feynman rules in
Appendix A are in agreement with those in [30].

After electroweak symmetry breaking, the W and Z
gauge bosons acquire masses given by m2

W = (1/2)g2v2

and m2
Z = (1/2)(g2+g′2)v2, where g and g′ are the SU(2)L

and U(1)Y gauge couplings and v2 = v2
1 + v2

2 . The com-
bination v2

1 + v2
2 is thus fixed by the electroweak scale

through v2
1 + v2

2 = (2(21/2)GF)−1, and we are left with
seven free parameters in (4.1), namely the (λi)i=1,...,6 and
tanβ = v2/v1. Meanwhile, three of the eight degrees of
freedom of the two Higgs doublets correspond to the three
Goldstone bosons (G±, G0) and the remaining five become
physical Higgs bosons: H0, h0 (CP -even), A0 (CP -odd)
and H±. Their masses are obtained as usual by the shift
Φi → Φi + vi and read [1]

m2
A = λ6v

2, m2
H± = λ4v

2,

m2
H,h =

1
2

[A + C ±
√

(A− C)2 + 4B2],
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where

A = 4v2
1(λ1 + λ3) + v2

2λ5, B = v1v2(4λ3 + λ5)
and C = 4v2

2(λ2 + λ3) + v2
1λ5. (4.2)

The angle β diagonalizes both the CP -odd and charged
scalar mass matrices, leading to the physical states H±
and A0. The CP -even mass matrix is diagonalized by the
angle α, leading to the physical states H0, h0, with α given
by

sin 2α =
2B√

(A− C)2 + 4B2
,

cos 2α =
A− C√

(A− C)2 + 4B2
. (4.3)

It is then straightforward algebra to invert the previous
equations to obtain the λi in terms of physical scalar
masses, tanβ, α and λ5:

λ4 =
g2

2m2
W

m2
H± , λ6 =

g2

2m2
W

m2
A,

λ3 =
g2

8m2
W

sαcα
sβcβ

(m2
H −m2

h) − λ5

4
, (4.4)

λ1 =
g2

8c2βm
2
W

[
c2αm

2
H + s2

αm
2
h −

sαcα
tanβ

(m2
H −m2

h)
]

− λ5

4
(−1 + tan2 β), (4.5)

λ2 =
g2

8s2
βm

2
W

[s2
αm

2
H + c2αm

2
h − sαcα tanβ(m2

H −m2
h)]

− λ5

4

(
−1 +

1
tan2 β

)
. (4.6)

We are free to take as seven independent parameters
(λi)i=1,...,6 and tanβ or equivalently the four scalar
masses, tanβ, α and one of the λi. In what follows we
will take λ5 as a free parameter. In our analysis we also
take into account the following constraints when the inde-
pendent parameters are varied:

(1) The contributions to the δρ parameter from the Higgs
scalars [31] should not exceed the current limits from
precision measurements [32]: −0.0017 ≤ δρ ≤ 0.0027.

(2) From the requirement of perturbativity for the top
and bottom Yukawa couplings [33], tanβ is cons-
trained to lie in the range 0.3 ≤ tanβ ≤ 130. Upper
and lower bounds have also been obtained from the
experimental limits on the processes e+e− → Z∗ →
h0γ and/or e+e− → A0γ. For very light h or A0

(≈ 10 GeV) in [34] one derived 0.15 ≤ tanβ ≤ 75,
with the limits weakening for heavier mh(mA). For
our study we will restrict the discussion to the values
tanβ ≥ 0.5.

(3) We require that tree-level unitarity is not violated in
a variety of Higgs scattering processes [35].

5. Numerical results and discussion

In this section we present our numerical results for ΓH ,
which is the fractional correction to the tree-level width
(2.13). We take the following experimental input for the
physical parameters [36]. The fine structure constant: α =
e2/(4π) = 1/137.03598; the gauge boson masses: mZ =
91.187 GeV, mW = 80.41 GeV; and the lepton masses:
me = 0.511 MeV, mµ = 0.1057 GeV, mτ = 1.784 GeV. For
the light quark masses we use the effective values which
are chosen in such a way that the experimentally extracted
hadronic part of the vacuum polarizations is reproduced
[37]:

md = 47 MeV, mu = 47 MeV, ms = 150 MeV,

mc = 1.55 GeV, mb = 4.5 GeV.

For the top quark mass we take mt = 175 GeV. In the on-
shell scheme we consider, sin2 θW is given by sin2 θW ≡
1 − (m2

W /m2
Z), and this expression is valid beyond tree

level.
Let us make some comment about the Yukawa correc-

tions discussed in [19]. In the case of an on-shell W , we
showed that for small tanβ in both Model I and II one
can find large corrections of up to around ±10% (away
from threshold effects at mA ≈ 2mt). In Model I for large
tanβ all fermion corrections decouple and reach a con-
stant value of 3.3% for tanβ > 4. In Model II ΓH is en-
hanced for large tanβ (> 20) since in this scenario the
internal b quarks in the loop couple more strongly to A0.
Typically for mH± = 440 one can reach a correction of
about −7% → −20% for large tanβ > 90 and light mA

(60 ≤ mA ≤ 100 GeV). For mA > 100 GeV the tanβ de-
pendence of the Yukawa correction is rather weak and lies
in the range of −5%→ 5% for 100 ≤ mA ≤ 330 GeV.

We stress at this stage that in the low tanβ (tanβ < 2)
regime the corrections in Model I and Model II are practi-
cally identical. Perturbative constraints on the λi and uni-
tarity constraints on the quartic scalar couplings constrain
the magnitude of tanβ. As shown in [35], tanβ ≥ 20 vio-
lates the unitarity bounds if λ5 = 0, although for λ5 = 0
values of tanβ ≥ 40 are comfortably allowed. However,
perturbative constraints on the λi (in particular λ1) dis-
favor tanβ ≥ 30 [35], and so in our analysis we will
only consider small to moderate values of tanβ. There-
fore our results are applicable to both Model I and II.
Note that in order to satisfy the experimental constraint
on δρ we have assumed (for the graphs we have plotted)
that α = β − (π/2) and the charged Higgs boson mass
mH± is quasi-degenerate with mH .

In Fig. 3 we plot ΓH as a function of mH± for mH =
mH± − 10 GeV, mh = 120 GeV, mA = 150 GeV and α =
β − (π/2) for several values of λ5. With the above set of
parameters and for tanβ = 0.5(1.5) and λ5 = 0 in Fig. 3a
(Fig. 3b), the unitarity constraints in the spirit of [35] re-
quire mH± ≤ 370 (480) GeV, with this bound weakening
for increasing λ5. This can be seen both in Fig. 3a and
Fig. 3b, where we cut the curves at the value of the charged
Higgs mass which violates the unitarity constraint. Both
for Fig. 3a and Fig. 3b the Yukawa correction is positive
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Fig. 3a,b. Total contribution to ΓH as a function of mH± .
We chose mH = mH± − 10, mh = 120, mA = 150 (GeV),
α = β − (π/2). a tanβ = 0.5, for the four values of λ5=0.0,
2.0, 6.0 and 8.5. b tanβ = 1.5, for the four values of λ5 = 0.0,
1.0, 3.0 and 5.0

and lies in the range 3.6% → 11.9% and 3.3%–4.3% for
Fig. 3a and Fig. 3b, respectively, while the bosonic cor-
rection is negative. In Fig. 3a (tanβ = 0.5), the bosonic
correction is in the range −0.6% → −0.9% for λ5 = 0
and mH± ∈ [231, 370], and so in this case the Yukawa
correction is dominant; for larger λ5 = 8.5 the bosonic
correction becomes strongly negative (−11%→ −50% for
mH± ∈ [230, 620]) and dominates the Yukawa corrections.

In Fig. 3b we take tanβ = 1.5, and the bosonic cor-
rection is in the range −0.6% → −1.6% for λ5 = 0 and
mH± ∈ [230, 475]; for λ5 = 1 and mH± ∈ [230, 520] it
is in the range −1.7% → −4.7%. In the above two cases
the bosonic and Yukawa corrections interfere destructively
leading to a small total correction of about ≈ 3%. In the
case where λ5 ≥ 3 the bosonic correction becomes strongly
negative and dominates the Yukawa correction.
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Fig. 4a,b. Total contribution to ΓH as a function of mA. We
chose mH = 500, mh = 360, mH± = 530 (GeV) and α =
β − (π/2). a tanβ = 0.8, for the three values of λ5 = 4.0, 6.0
and 10.0. b tanβ = 1.6, for the three values of λ5 = 4.0, 8.0
and 12

Figures 4a,b show the total contribution to ΓH as a
function of mA for mH = 500, mh = 360 and mH± =
530 GeV. Figure 4a corresponds to tanβ = 0.8 and Fig. 4b
corresponds to tanβ = 1.6 (with α = β − (π/2)). In
both figures the Yukawa correction is positive in the re-
gion mA ≤ 277 GeV and mA ≥ 352 GeV, while for mA ≈
350 GeV the channel A→ tt opens, leading to a very large
negative correction. Note that the bosonic correction is
negative for every value of mA.

We can conclude that for the intermediate mass range
of mA (away from threshold effects mA ≈ 2mt) and for
λ5 ≤ 4, there is a cancellation between the Yukawa cor-
rection and the bosonic correction. For large λ5 the con-
tribution to ΓH is dominated by the bosonic correction
and is consequently negative. For mA ≈ 350 GeV (≈ 2mt)
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Fig. 5. a Bosonic contribution (Γ bos
H ) to ΓH as function of

λ5. We chose mH = 180, mh = 120, mH± = 200, mA = 110
(GeV), α = β − (π/2), and several values of tanβ. b Bosonic
contribution (Γ bos

H ) to ΓH as a function of sinα for three differ-
ent configurations Ci, i = 1, 2, 3: C1: mH± = 220, mH = 180,
mh = 80, tanβ = 3.6 and λ5 = 5; C2: mH± = 250, mH = 280,
mh = 140, tanβ = 1.6 and λ5 = 5; C3: mH± = 420, mH = 400,
mh = 290, tanβ = 2.6 and λ5 = 8

there is constructive interference between the Yukawa and
bosonic corrections.

In Fig. 5a we plot the bosonic contribution to ΓH (de-
noted Γ bos

H ) as a function of λ5 for tanβ = 0.5, 5, 8. The
fermionic correction (independent of λ5) takes the values
-3.21%, 3.22%, 3.24%. One can see from the curves that
Γ bos
H increases with λ5 and may approach −40%. This is

expected from the form of the trilinear scalar couplings
which increase linearly with λ5.

Figure 5b shows the dependence of Γ bos
H on sinα for

−π/2 < α < π/2. Here C1, C2 and C3 correspond to
three distinct parameter configurations which satisfy both
the unitarity and ρ parameter constraints (see the figure
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Fig. 6. Ratio R (5.1) as a function of tanβ for various values
of mA and for mH± = 500GeV

caption). The fermionic corrections (independent of α) for
C1, C2 and C3 take the values 3.2%, 3.5% and 3.4%, re-
spectively. The bosonic corrections become important for
sinα ≈ ±1.

It is apparent from the figures that Γ bos
H has a com-

plicated dependence on α, β, λ5 and the physical Higgs
masses. This is clear from the explicit form of the trilinear
couplings in Appendix A.1, which mediate the numerous
triangular loop corrections. Therefore enhancement in the
bosonic sector may occur in a variety of scenarios. Of par-
ticular interest is the sensitivity to λ5, a measurement of
which (along with the Higgs masses and mixing angles)
would allow for the reconstruction of the Higgs poten-
tial. We suggest the measurement of BR(H± → A0W ) as
a way of obtaining information on λ5. The decay mode
(H± → A0W ) may in fact be dominant and in Fig. 6 we
show the ratio

R =
Γ (H± → A0W )

Γ (H± → A0W ) + Γ (H± → tb)

as a function of tanβ for various values of mA, fixing
mH± = 500 GeV. We plot the tree-level width for (H± →
A0W ) given in (2.3), and the tree-level width for H± → tb
given in [14], assuming Model II type couplings. Since
other channels such as H± → h0W and H± → H0W
may be open, the above ratio should be interpreted as the
upper bound on BR(H± → A0W ). Note that these addi-
tional channels are suppressed by the factors cos2(β − α)
and sin2(β − α), respectively, while Γ (H± → A0W ) pos-
sesses no mixing angle suppression. One can see that the
decay H± → A0W is maximized for moderate values of
tanβ (i.e. when Γ (H± → tb) is minimized). The curves
with lighter mA are less phase space suppressed and so
the value of R may be larger. For fixed mA and tanβ the
sensitivity to mH± is rather mild. A larger mH± slightly
increases R since Γ (H± → A0W ) ∼ m3

H± while Γ (H± →
tb) ∼ mH± .
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Given the possible large BR, an accurate measurement
of BR(H± → A0W ) may allow one to obtain information
on λ5. As explained above, the radiative corrections show
sensitivity to several of the input parameters. If experi-
mental information on the Higgs masses and mixing an-
gles were available then it might be possible to measure λ5.
At a e+e− linear collider [38] one could measure the Higgs
masses from a variety of production mechanisms (e+e− →
Zh0, ZH0, h0A0, H0A0, H+H−). Information on the mix-
ing angles α, β could be obtained [39] from an analysis of
the production cross sections and branching ratios. Other
processes which are sensitive to λ5 are e+e− → H+H− [5]
and H±W∓ [40], while theoretical bounds on the Higgs
masses in the case of λ5 = 0 are explored in [35,41].

6. Conclusions

We have computed the radiative corrections to the on-shell
decay H+ → A0W+ in the general two Higgs doublet
model, taking into account the experimental constraint
on the ρ parameter and also unitarity constraints on the
scalar sector parameters. We have included the Yukawa
corrections, the full electroweak corrections (bosonic), and
also the real photon emission in the final state (brems-
strahlung). The computation was done with dimensional
regularization in the on-shell scheme. We find that the to-
tal radiative corrections may approach 40% in regions of
parameter space for both small and moderate tanβ. The
bosonic correction is sensitive to the soft discrete symme-
try breaking parameter λ5, and may interfere both con-
structively and destructively with the Yukawa correction.
For larger λ5 the bosonic contribution becomes strongly
negative and in general dominates the Yukawa correc-
tion. For mA ≈ 2mt and low tanβ the Yukawa correc-
tion is maximized and interferes constructively with the
bosonic correction, resulting in large negative corrections
to the tree-level width. Finally, we showed that the de-
cay H± → A0W± may supersede H± → tb as the dom-
inant decay channel, and thus a precise measurement of
its branching ratio may allow information to be obtained
on λ5.
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reading the manuscript.

Appendix A:
THDM trilinear and quartic scalar couplings

In this appendix we list the Feynman rules in the general
THDM for the trilinear and quartic scalar couplings rel-
evant for our study. All formulae are written in terms of
the physical masses, α, β and the soft breaking term λ5.
Note that in the trilinear couplings (quartic couplings)
we have factorized out ie (ie2). In the following gC =
1/(2sWmW s2β), v2 = 2m2

W /g2, c±
βα = cos(β±α) and

s±
βα = sin(β±α).

A.1 Trilinear scalar coupling

gH0H+H− = −2gc(m2
H0(c3βsα + s3

βcα)

+ m2
H±s2βc

−
βα − s+

βαλ5v
2), (A.1)

gH0H+G− = gcs2βs
−
βα(m2

H0 −m2
H±), (A.2)

gh0H+H− = −2gc(m2
h0(cαc3β − sαs

3
β) + m2

H±s2βs
−
βα

− c+βαλ5v
2), (A.3)

gh0H+G− = −gcs2βc
−
βα(m2

h0 −m2
H±), (A.4)

gH0A0A0 = −2gc(m2
H0(sαc3β + cαs

3
β)

+ m2
As2βc

−
βα − s+

βαλ5v
2), (A.5)

gH0A0G0 = gcs2βs
−
βα(m2

H0 −m2
A), (A.6)

gh0A0A0 = −2gc(m2
h0(cαc3β − sαs

3
β) + m2

As2βs
−
βα

− c+βαλ5v
2), (A.7)

gh0A0G0 = gcs2βc
−
βα(m2

A −m2
h0), (A.8)

gA0H+G− = igcs2β(m2
H± −m2

A). (A.9)

A.2 Quartic scalar coupling

gH0H0H0H0 = −12g2
C [m2

H0(cβs3
α + sβc

3
α)2

+ m2
h0s2

αc
2
αs

−
βα

2 − λ5v
2(c2α − c2β)2], (A.10)

gh0h0h0h0 = −12g2
C [m2

H0s2
αc

2
αc

−
βα

2

+ m2
h0(cβc3α − sβs

3
α)2

− λ5v
2(c2α − s2

β)2], (A.11)

gA0A0A0A0 = −12g2
C [m2

H0(cαs3
β + sαc

3
β)2

+ m2
h0(cαc3β − sαs

3
β)2 − λ5v

2c22β ], (A.12)

gG0G0G0G0 = −3g2
Cs

2
2β [m2

H0c−
βα

2
+ m2

h0s−
βα

2
], (A.13)

gH+H−H+H− = −8g2
C [m2

H0(cαs3
β + sαc

3
β)2

+ m2
h0(cαc3β − sαs

3
β)2 − λ5v

2c22β ], (A.14)

gG+G−G+G− = −2g2
Cs

2
2β [m2

H0c−
βα

2
+ m2

h0s−
βα

2
], (A.15)

gH0H0h0h0 = −4g2
C [m2

H0sαcα(sβcβ + 3sαcαs−
βα

2
)

− m2
h0sαcα(sβcβ − 3sαcαc−

βα

2
)

− λ5v
2(3s2

αc
2
α − s2

βc
2
β)], (A.16)

gH0H0A0A0 = −2g2
C [2m2

H0(sαc3β + cαs
3
β)(cβs3

α + sβc
3
α)

+ 2m2
h0sαcαs

−
βα(cαc3β − sαs

3
β)

+ m2
A(c2β − s2

β)(c2α − s2
β + 2sαsβc−

βα)

+ 2λ5v
2(c2β(c2αs

4
β − s2

αc
4
β)

− s2
βc

2
α(1 + s2αs2β))], (A.17)

gh0h0A0A0 = −2g2
C [2m2

H0(sαc3β + cαs
3
β)sαcαc−

βα

+ 2m2
h0(cβc3α − sβs

3
α)(cαc3β − sαs

3
β)

+ m2
A(c2β − s2

β)(s2
α + s2

β − 2sαsβc−
βα)
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+ 2λ5v
2(c2β(s2

αs
4
β − c2αc

4
β)

− s2
βc

2
α(1− s2αs2β))]. (A.18)

Appendix B: One-loop vertex: H+ → WA0

In this appendix we will list the analytic expression for
each generic diagram of Fig. 2. The sum over all the par-
ticle contents yields the corresponding contribution to the
one-loop amplitude for H+ →WA0. For scalar and tensor
integrals we use the same convention as [5]; the analytical
expression of all scalar functions can be found in [25,26].

B.1 Fermionic loops

The diagram with the uud triangle, Fig. 2.1, yields the
following contribution to the one-loop amplitude:

M2.1 = − eαNC

2
√

2πsW
Yuu{Y L

ud(2B0 + B1)

+ muC0(muY
L
ud + mdY

R
ud)

+ Y L
ud[m

2
WC2 − 2C00 − 2m2

AC11

+ C12(m2
H± −m2

W −m2
A)]}. (B.1)

NC = 3(1) for quarks (leptons). Here, all the B0, B1, Ci
and Cij have the same arguments:

[B0, B1](m2
H± ,m2

u,m
2
d),

[Ci, Cij ](m2
A,m

2
H± , p2

W ,m2
u,m

2
u,m

2
d).

The summation has to be performed over all fermion
families; in practice only the third quark generation is rel-
evant.

The corresponding expression for the the diagram with
the ddu triangle in Fig. 2.2 is obtained from the previous
one by making the replacements

Y L
ud ←→ Y R

ud, Yuu ←→ Ydd, mu ←→ md.

B.2 Bosonic loops

Diagram 2.3

M2.3 =
eα

2π
gH+SiSk

gASiSjgW+SjSk

× C1(m2
A,m

2
H± ,m2

W ,m2
Sj
,m2

Si
,m2

Sk
). (B.2)

The couplings are summarized in Table 1.

Diagram 2.4

M2.4[h] = −eαc−
βα

2

16πs3
W
{−4B0(m2

H± ,m2
h,m

2
W )

Table 1.

(Si, Sj , Sk) gH+SiSk
gASiSj gW+SjSk

(h, A, H+) ghH+H+ ghAA
1

2sW

(G+, H+, h) ghH+G+ gAG+H+
c−

βα

2sW

(G+, H+, H) gHH+G+ −igAH+G+ − s−
βα

2sW

(G+, H+, A) −igAH+G+ −igAH+G+
1

2sW

(H, A, H+) gHH+H+ gHAA
1

2sW

(h, G0, G+) ghH+G+ ghAG0
1

2sW

(H, G0, G+) gHH+G+ gHAG0
1

2sW

(A, h, G+) −igAH+G+ ghAA
s−

βα

2sW

(A, H, G+) −igAH+G+ gHAA
c−

βα

2sW

(H+, G+, h) ghH+H+ −igAH+G+ − s−
βα

2sW

(H+, G+, H) gHH+H+ −igAH+G+ − c−
βα

2sW

+ [2(−m2
A + m2

H± − 2m2
Z)− 4p2

W ]C0[h]

+ [3(−m2
A + m2

H±)− 4p2
W ]C1[h]

+ [4(−m2
A + m2

H±)− 4p2
W ]C2[h] + 4C00[h]

+ [m2
H± + 3m2

A − p2
W ]C11[h]

− 2[m2
H± −m2

A]C12[h]}, (B.3)

M2.4[H] = M2.4[h][c−
βα

2 → s−
βα

2
,mh → mH , h→ H],

(B.4)

where the arguments of Ci and Cij are given by

[Ci, Cij ][S] = [Ci, Cij ](m2
A,m

2
H± , p2

W ,m2
Z ,m

2
S ,m

2
W ).

Diagram 2.5

M2.5[h] = −eαc−
βα

2

16πs3
W
{B0(m2

H± ,m2
W ,m2

h)

+ B1(m2
H± ,m2

W ,m2
h) + [p2

W − 2m2
H± ]C1[h]

+ 2C00[h] + [m2
H± − (p2

W −m2
A)]C11[h]

− [p2
W −m2

A + m2
H± ]C12[h]}, (B.5)

M2.5[H] = M2.5[h][c−
βα → s−

βα,mh → mH , h→ H], (B.6)

M2.5[A] = M2.5[h][c−
βα

2 → −1,mh → mA, h→ A], (B.7)

where the arguments of Ci and Cij are

[Ci, Cij ][S] = [Ci, Cij ](m2
A,m

2
H± , p2

W ,m2
H± ,m2

W ,m2
S).

Diagram 2.6

M2.6[h] =
eαcβα−mW

8πc2W
gh0H+G−(2C0[h] + C1[h]), (B.8)

M2.6[H] = M2.6[h][c−
βα → −s−

βα, h→ H]. (B.9)

Here C0 and C1 have the same arguments:

[C0, C1][S] = [C0, C1](m2
A,m

2
H± , p2

W ,m2
Z ,m

2
S ,m

2
W ).
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Diagram 2.7

M2.7[h] = −eα(c2W − s2
W)c−

βα

2

16πs3
Wc2W

{B0(m2
H± ,m2

Z ,m
2
H±)

+ B1(m2
H± ,m2

Z ,m
2
H±)

+ [p2
W −m2

h −m2
H± ]C1[h] + 2C00[h]

+ [−p2
W + m2

A + m2
H± ]C11[h]

− [p2
W −m2

A + m2
H± ]C12[h]}, (B.10)

M2.7[H] = M2.7[h][c−
βα → s−

βα, h→ H,mh → mH ].

(B.11)

The arguments of Ci and Cij are given by

[Ci, Cij ][S] = [Ci, Cij ](m2
A,m

2
H± , p2

W ,m2
S ,m

2
Z ,m

2
H±).

Diagram 2.8

M2.8[h] =
eαsβα−mW

8πs2
W

gh0A0A0(2C0[h] + C1[h]), (B.12)

M2.8[H] = M2.8[h][s−
βα → c−

βα, h→ H, gh0A0A0

→ gH0A0A0 ], (B.13)

where C0 and C1 have the same arguments:

[C0, C1][S] = [C0, C1](m2
A,m

2
H± , p2

W ,m2
S ,m

2
A,m

2
W ).

Diagram 2.9

M2.9[h] =
eαs−

βαmW

8πs2
W

gh0H+H−(2C0[h] + C1[h]), (B.14)

M2.9[H] = M2.9[h][s−
βα → c−

βα, h→ H, gh0H+H−

→ gH0H+H− ], (B.15)

where C0 and C1 have the same arguments:

[C0, C1][S] = [C0, C1](m2
A,m

2
H± , p2

W ,m2
W ,m2

H± ,m2
S).

Diagram 2.10

M2.10[Z] = −eα(c2W − s2
W)mW

8πc2W
×gA0H+G−(2C0[Z] + C1[Z]), (B.16)

M2.10[γ] =
eαmW

4π
gA0H+G−(2C0[δ] + C1[δ]). (B.17)

Again the C0 and C1 have the same arguments:

[C0, C1][V ] = [C0, C1](m2
A,m

2
H± , p2

W ,m2
W ,m2

H± ,m2
V ).

Here δ is a small photon mass introduced to regularize the
infrared divergence contained in the C0 function.

Diagram 2.11

M2.11[Z] =
eα(c2W − s2

W)
16πs3

W
(4B0(m2

H± ,m2
Z ,m

2
H±)

+ [2p2
W + m2

A −m2
H± + 2m2

W ]2C0[Z],

+ [4p2
W + 3(m2

A −m2
H±)]C1[Z]

+ [p2
W + m2

A −m2
H±)]4C2[Z]− 4C00[Z]

+ [p2
W −m2

H± − 3m2
A]C11[Z]

+ [m2
H± −m2

A]2C12[Z]), (B.18)

M2.11[γ] = M2.11[Z]
[

(c2W − s2
W)

s2
W

→ 2,mZ → δ

]
. (B.19)

All Ci and Cij have the same arguments:

[Ci, Cij ][V ] = [Ci, Cij ](m2
A,m

2
H± , p2

W ,m2
W ,m2

H± ,m2
V ).

Diagram 2.12

M2.12[h, Z] = − eαc−
βα

2

16πsWc2W
(2B0(m2

A,m
2
Z ,m

2
h)

+ B1(m2
A,m

2
Z ,m

2
h)), (B.20)

M2.12[H+,W+] = − eα

16πs3
W

(2B0(m2
A,m

2
W ,m2

H±)

+ B1(m2
A,m

2
W ,m2

H±)), (B.21)

M2.12[H,Z] = − eαs−
βα

2

16πsWc2W
(2B0(m2

A,m
2
Z ,m

2
H)

+ B1(m2
A,m

2
Z ,m

2
H)). (B.22)

Diagram 2.13

M2.13[Z] =
eα(c2W − s2

W)
16πsWc2W

(B0(m2
H± ,m2

H± ,m2
Z)

− B1(m2
H± ,m2

H± ,m2
Z)), (B.23)

M2.13[γ] = − eα

8πsW
(B0(m2

H± ,m2
H± , δ)

− B1(m2
H± ,m2

H± , δ)). (B.24)

Diagram 2.14

M2.14 = − eα

16πs3
W

(2B0(m2
H± ,m2

W ,m2
A)

+ B1(m2
H± ,m2

W ,m2
A)). (B.25)

Diagram 2.15 and 2.16

For this kind of topology, it is clear that the amplitude is
proportional to the W gauge boson momentum (Lorentz
invariance) and consequently for the W on-shell the am-
plitude vanishes:

M2.15 = 0, M2.16 = 0. (B.26)



A.G. Akeroyd et al.: Radiative corrections to the decay H+ → W+A0 61

Appendix C: Charged
and CP -odd Higgs bosons self-energies

This appendix is devoted to the self-energies of the
charged and CP -odd Higgs bosons which are needed for
the on-shell renormalization scheme. The gauge bosons
self-energies γ–γ, γ–Z, Z–Z and W–W can be found in
[27].

C.1 CP -odd Higgs boson self-energy

The CP -odd Higgs self-energy ΣAA can be cast into three
parts: (i) a fermionic part, 2.20, (ii) a pure scalar part,
2.21, 2.22, 2.23 and 2.26, and (iii) a mixing of gauge boson
and scalar, 2.24, 2.25, 2.27 and 2.28, in such a way that

ΣAA(q2) = ΣAA
f (q2) + ΣAA

S (q2) + ΣAA
V S (q2), (C.1)

with

ΣAA
f (q2) = −αNC

π
Y 2
ff (A0(m2

f ) + q2B1(q2,m2
f ,m

2
f )),

(C.2)

ΣAA
S (q2) =

α

4π
(g2
hAAB0(q2,m2

A,m
2
h)

+ g2
HAAB0(q2,m2

A,m
2
H)

+ g2
hAGB0(q2,m2

h,m
2
Z) + g2

HAGB0(q2,m2
H ,m2

Z)
+ 2g2

AH+G−B0(q2,m2
H± ,m2

W ))

+
α

8π

(
− gAAAAA0(m2

A)− ghhAAA0(m2
h)

− gHHAAA0(m2
H)− 2gH+H−AAA0(m2

H±)

− 2gG+G−AAA0(m2
W )

− gAAGGA0(m2
Z) +

2
s2
Wc2W

A0(m2
Z)

+
4
s2
W

A0(m2
W )− 2

s2
W

m2
W −

1
s2
Wc2W

m2
Z

)
, (C.3)

ΣAA
V S (q2) = − α

16πc2Ws2
W

× (c−
βα

2
(A0(m2

Z) + (m2
h + q2)B0(q2,m2

h,m
2
Z)

− 2q2B1(q2,m2
h,m

2
Z))

+ s−
βα

2
(A0(m2

Z) + (m2
H + q2)B0(q2,m2

H ,m2
Z)

− 2q2B1(q2,m2
H ,m2

Z)) + c2W(A0(m2
W )

+ (m2
H± + q2)B0(q2,m2

H± ,m2
W )

− 2q2B1(q2,m2
H± ,m2

W ))). (C.4)

C.2 Charged Higgs boson self-energy

The charged Higgs boson self-energy ΣH+H−
can be cast

into three parts: (i) a fermionic part, 2.29, (ii) a pure scalar
part 2.30, 2.31, 2.32 and 2.35, and (iii) a mixing of gauge

boson and scalar, 2.33, 2.34 and 2.36, in such a way that

ΣH+H−
(q2) = ΣH±H±

f (q2) + ΣH+H−
S (q2) + ΣH+H−

V S (q2),

(C.5)

ΣH±H±
ff ′ (q2) = −αNC

2π
((Y L

ff ′
2

+ Y R
ff ′

2
)

× (A0(m2
f ) + q2B1(q2,m2

f ′ ,m2
f ))

+ (m2
f ′(Y L

ff ′
2

+ Y R
ff ′

2
)

+ 2mf ′mfY
L
ff ′Y R

ff ′)B0(q2,m2
f ′ ,m2

f )), (C.6)

ΣH±H±
S (q2) =

α

4π
(g2
AH+G−B0(q2,m2

A,m
2
W )

+ g2
hH+H−B0(q2,m2

h,m
2
H±)

+ g2
hH+G−B0(q2,m2

h,m
2
W )

+ g2
HH+H−B0(q2,m2

H ,m2
H±)

+ g2
HH+G−B0(q2,m2

H ,m2
W ))

− α

8π
(
gH+H−AAA0(m2

A) + gH+H−hhA0(m2
h)

+ gH+H−HHA0(m2
H)

+ 2gH+H−H+H−A0(m2
H±)

+
2
s2
W

(m2
W − 2A0(m2

W ))

+ gH+H−GGA0(m2
Z)

+
(s2

W − c2W)2

c2Ws2
W

(m2
Z − 2A0(m2

Z))
)
, (C.7)

ΣH±H±
V S (q2) = − α

16πs2
W

× (4s2
W((m2

H± + q2)B0(q2, 0,m2
H±)

− 2q2B1(q2,m2
H± , 0))

+
(c2W − s2

W)2

c2W

× (A0(m2
Z) + (m2

H± + q2)B0(q2,m2
H± ,m2

Z)

− 2q2B1(q2,m2
H± ,m2

Z))

+ (A0(m2
A) + (m2

W + 4q2)B0(q2,m2
A,m

2
W )

+ 4q2B1(q2,m2
W ,m2

A)) + c−
βα

2
(A0(m2

h)

+ (m2
W + 4q2)B0(q2,m2

h,m
2
W )

+ 4q2B1(q2,m2
W ,m2

h)) + s−
βα

2
(A0(m2

H)

+ (m2
W + 4q2)B0(q2,m2

H ,m2
W )

+ 4q2B1(q2,m2
W ,m2

H))
)
. (C.8)
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